TEFY4305 solutions exercise set 1 2014

Problem 2.2.3

The equation reads
o1 — %),
The fixed points are the solutions to z(1 — z?) = 0. This yields
=0, r==+1.
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Furthermore, f’(z) = 1 — 3z? Since f'(x = 0) = 1, x = 0 is an unstable fixed point. Since

f'(x = £1) = =2, x = +1 are stable fixed points.
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Figure 1: Vector field including the three fixed points.

The exact solution can be found by separation of variables.

dz
z(1 — 2?)

The left-hand side can be rewritten using partial fractional decomposition.
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Integrating term by term and rearranging yields
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where C'is an integration constant. Exponentiating gives
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where K = €2¢. This is quadratic equation for z and can be easily solved. For the upper
sign, we obtain

VEKet
oD = o (7)

For the lower sign, we find

VEKet
o) = 2o (8)

Note that the solutions tend to z = £1 as t — oo. In the first case, we have x(0) = i./%

and corresponds to the initial condition where |z(0)] > 1. In the second case, we have

2(0) = 4,/-£~ and corresponds to the initial condition where |2(0)] < 1. If the initial

K+1
condition is z(0) = %1, we are at a stable fixed point and we have z(t) = £1 for all t.
Finally if 2(0) = 0, we start at the unstable fixed point and remain there. Also note the

. . . _ L
inflection points at x = £+ 75

Figure 2: Exact solution for various initial values as explained in main text.

Problem 2.4.7

We have



3

The fixed points are found by solving ax — 2. x = 0 is always a fixed point and z = ++/a

for a > 0. Moreover,
fl(x) = a—32*, (10)

and therefore f(r = 0) = a. = = 0 is thus unstable for a > 0 and stable for a < 0. For

a =0, we have f(z) = —23 which is negative for positive z and vice versa. Hence z = 0 is
a stable fixed point for a = 0. For z = ++/a, we have f’(++/a) = —2a which is negative for
positive a and hence these fixed points are stable.

Problem 2.6.1

The point is that the harmonic oscillator is not a first-order system. It is a system of two
coupled differential equations. Define & = y. This yields

my = —kx (11)
T =y, (12)

and we conclude that the system is two dimensional and so does not correspond to flow on
the line.

Problem 2.7.6

The dynamics is governed by the equation

i = r+az—a°, (13)
where r is a parameter. The potential function V() is given by integrating V'(z) = — f(z) =
—r —x + 2%, This yields

Lo 14
V() = —rax— 3% + 2% +C, (14)

where C' is an integration constant which we henceforth set to zero.

In order to gain insight into the number and position of fixed points as a function of the
parameter r, it is useful to plot the function g(x) = z® — x and the horizontal line h(x) = r.
The fixed points are then given by the solutions to g(z) = h(z).

The extrema x4 of g(x) are given by

Jdx) = 322 -1
~ 0, (15)
which gives . = £1/v/3. Thus |g(z+)| = 2/3v/3. This implies that there is one fixed point

for |r| > 2/3v/3, two fixed points for |r| = 2/3v/3 and three fixed points for |r| < 2/3+/3.
This is shown in Fig. 3.
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Figure 3: Plot of the functions g(z) and the horizontal line h(x) = r for various values of r.
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Figure 4: Plot of the potential V' (z) for various values of r.

The potential V(z) is plotted for the same values of r in Fig. 4. For r = 0, we see that
there are two minima, namely z = £1 and one maximum x = 0. These correspond to two
stable fixed points and one unstable fixed point. For r = 2/ 3v/3, we see that the stable fixed
point to the left of the origin has merged with the unstable minimum and is half-stable. For
r=4/ 3v/3, there is only stable fixed point to the right of the origin.



