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of eight matrices

1 0 1 0 -1 0
M:=1, 1]’ Ma=1o —1]’ MB”[ 0 ~1}’
-1 0 0 -1 0 1
M=l o 1]’ M5‘_1, 0]’ M‘S‘[—l o]’

0 1 F 0 -1
M:=14 0]’ Ms={_4 o]‘

By explicit calculation it can be verified that the product of any two
members of ¢ is also contained in ¥, so that axiom (a) is satisfied.
Axiom (b) is automatically true for matrix multiplication, M; is the
identity of axiom (c) as it is a unit matrix, and finally axiom (d) is
satisfied as

M'=M;, M;'=M,, M;'=M,, M;'=M,,
Mg1:M67 Mgl :MS, M;l :M7, Mgl :Mg.

Example IV The groups U(N) and SU(N)

U(N) for N=1 is defined to be the set of all NxX N unitary matrices u
with matrix multiplication as the group multiplication operation.
SU(N) for N=2 is defined to be the subset of such matrices u for
which det u=1, with the same group multiplication operation. (As
noted in Appendix A, if u is unitary then det u = exp (ia), where « is
some real number. The “S” of SU(N) indicates that SU(N) is the
“special” subset of U(N) for which this « is zero.)

It is easily established that these sets do form groups. Consider
first the set UN). As (w;u,)"=ujul and (w,uy) " =u;u;’, if u, and
u, are both unitary then so is u;u,. Again axiom (b) is automatically
valid for matrix multiplication and, as the unit matrix 1 N IS a
member of U(N), it provides the identity E of axiom (c). Finally,
axiom (d) is satisfied, as if u is a member of U(N) then so is u™t.

For SU(N) the same considerations apply, but in addition if u, and
u, both have determinant 1, Equation (A.4) shows that the same is
true of uyu,. Moreover, 1y is a member of SU(N), so it is its identity,
and u™' is a member of SU(N) if that is the case for u.

The set of groups SU(N) is particularly important in theoretical
physics. SU(2) is intimately related to angular momentum and
isotopic spin, as will be shown in Chapters 12 and 18, while SU(3) is
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M, M, M, M, Ms M M, M,

M, M, M, M, M, M, M M, M,
M, M, M, M, M, M, M, M M;
M; M; M, M. M, M M; M; M,
M, M, M; M, M, M, M, M; M,
M; M; M, M, M, My M, M, M,
M, Mg M, M, M, M, M, M, M,
M, M, M; M, M, M, M, M,

M, M, M, M, M; M, M, M, M,

Table 1.1 Multiplication table for the group of Example III.

tion relations between the basis elements of the corresponding real
Lie algebra, as will be explained in detail in Chapter 10.

2 Groups of coordinate transformations

To proceed beyond an intuitive picture of the effect of symmetry
operations, it is necessary to specify the operations in a precise
algebraic form so that the results of successive operations can be
easily deduced. Attention will be confined here to transformations in
a real three-dimensional Euclidean space R®, as most applications in
atomic, molecular and solid state physics involve only transforma-
tions of this type. (The generalization to Minkowski space-time will
be introduced in Example V of Chapter 2, Section 7, and developed in
more detail in Chapter 17.)

(a) Rotations

Let Ox, Oy, Oz be three mutually orthogonal Cartesian axes and let
Ox', Oy', Oz' be another set of mutually orthogonal Cartesian axes
with the same origin O that is obtained from the first set by a
rotation T about a specified axis through O. Let (x,v,2)and (x', y', 2)




