TFY4215/FY1006

Delta function

Dirac's delta function can be loosely defined as

$$\delta(x) = \begin{cases} 0, & x \neq 0, \\ \infty, & x = 0. \end{cases}$$
(1)

in such a way that the area under the curve is constant

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1 \,. \tag{2}$$

One can formally show that no such function exists. However, one can define a sequence of integrable functions $f_n(x)$, such that

$$\int_{-\infty}^{\infty} f_n(x) \, dx = 1 \,, \tag{3}$$

for all n and such that $f_n(x)$ becomes increasingly concentrated around x = 0 as n increases. We can then define the integral of the δ -function by

$$\int_{-\infty}^{\infty} \delta(x) \, dx \equiv \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) \, dx \,. \tag{4}$$

A sequence of functions with these properties is called a δ -sequence. For example the sequence of Gaussians

$$f_n(x) = \frac{n}{\sqrt{\pi}} e^{-n^2 x^2} , \qquad (5)$$

has these properties. This is illustrated in Fig. 1.

Another example is the sequence of functions $g_n(x)$ defined by

$$g_n(x) = \begin{cases} \frac{n}{2}, & |x| < \frac{1}{n}, \\ 0, & |x| \ge \frac{1}{n}. \end{cases}$$
(6)

For proofs, the sequence $g_n(x)$ is easier to use.¹

¹Note that all identities and relations must be independent of the particular sequence one is using. This can be shown rigorously.

Figure 1: Sequence $f_n(x)$ of Gaussians which are increasingly concentrated around x = 0.

We are interested in calculating the integral

$$I \equiv \int_{-\infty}^{\infty} f(x)\delta(x) \, dx \,, \tag{7}$$

where f(x) is some integrable function. Heuristically speaking, the δ -function picks up a contribution to the integral only when x = 0, and so our intuition tells us that the value of the integral should be I = f(0). Let us confirm this expectation. In analogy with the definition Eq. (4), we define the integral I by

$$I \equiv \lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) g_n(x) \, dx \tag{8}$$

Using the sequence (6), we obtain

$$\int_{-\infty}^{\infty} f(x)g_n(x) \, dx = \frac{n}{2} \int_{-1/n}^{1/n} f(x) \, dx$$
$$= f(\xi) \,, \tag{9}$$

where $-\frac{1}{n} < \xi < \frac{1}{n}$. The last line follows from the mean-value theorem of calculus. In the limit $n \to \infty$, the value is $\xi = 0$ and so we obtain the important result

$$\int_{-\infty}^{\infty} \delta(x) f(x) \, dx = f(0) \tag{10}$$

Similarly, let us calculate the integral

$$I = \int_{-\infty}^{\infty} f(x)\delta(x-a) \, dx \,, \qquad (11)$$

where a is a nonzero constant. Changing variable to y = x - a, we see that we must have I = f(a):

$$I = \int_{-\infty}^{\infty} f(y+a)\delta(y) \, dy$$

= $f(a)$. (12)

We next consider the integral

$$I = \int_{-\infty}^{\infty} \delta(f(x)) \, dx \,, \tag{13}$$

If the function f(x) is nonzero for all $x \in (-\infty, \infty)$, the integral vanishes. Assume next that the function has a single zero at $x = x^*$. Moreover assume that $f'(x^*) > 0$ so that f(x) is invertible in a small interval around x^* . Introducing the variable y = f(x), the integral can be written as

$$I = \int_{x^* - \Delta}^{x^* + \Delta} \delta(f(x)) dx$$

$$I = \int_{f(x^*) - f'(x^*)\Delta}^{f(x^*) - f'(x^*)\Delta} \delta(y) \frac{dx}{dy} dy$$

$$= \int_{-f'(x^*)\Delta}^{f'(x^*)\Delta} \delta(y) [f^{-1}(y)]' dy$$

$$= [f^{-1}(y)]' \Big|_{y=0}$$

$$= \frac{1}{f'(x^*)}, \qquad (14)$$

where we in the last line have used $x = f^{-1}(y)$ and therefore $1 = [f^{-1}(y)]'f'(x)$. If $f'(x^*) < 0$, the integral changes sign, $I = -1/f'(x^*)$. The two cases can conveniently be summarized in the formula

$$I = \frac{1}{|f'(x^*)|} . (15)$$

If the function f(x) has more than one zero, one must simply sum over all the zeros x_i^* of f(x) and we can write

$$\delta(f(x)) = \sum_{i} \frac{1}{|f'(x_i^*)|} \delta(x - x_i^*)$$
(16)

Example

Consider the following integral

$$I = \int_{-\infty}^{\infty} \delta(x^2 - a^2) \, dx \,. \tag{17}$$

We define $f(x) = x^2 - a^2$ and we then have f'(x) = 2x. The zeros of f(x) are $x^* = \pm a$ and hence $|f'(x = x^*)| = 2|a|$. This implies that we can write

$$I = \frac{1}{2|a|} \int_{-\infty}^{\infty} \left[\delta(x-a) + \delta(x+a)\right] dx$$
$$= \frac{1}{|a|}.$$
 (18)

Note that the function $\delta(x^2)$ is too singular to be well defined. The problem is that the derivative of $f(x) = x^2$ vanishes at x = 0 which is the zero of the function itself and so Eq. (15) makes no sense. This also follows directly from Eq. (18).

Heaviside's step function

Let us define the function $\theta(x)$ by

$$\theta(x) = \int_{-\infty}^{x} \delta(x) \, dx \,. \tag{19}$$

Using the rules of delta-function calculus, we find 2

$$\theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases}$$
(20)

which is nothing but Heaviside's step function, see Fig. 2.

From the fundamental theorem of calculus, one obtains

$$\theta'(x) = \delta(x) . \tag{21}$$

Eq. (21) is a formal result as the derivative of Eq. (20). $\theta'(x)$ is not defined for x = 0.

²The defining Eq. (19) may not hold for x = 0. It depends on the limiting procedure that defines the integral of $\delta(x)$. For example using one of the delta sequences from this chapter, it is clear that $\theta(0) = 1/2$, which is also a common definition.

Figure 2: Heaviside step function.

Problems

1) Calculate the Fourier transform f(p) of the delta function $\delta(x)$. Use this result to find an integral representation of $\delta(x)$.

2) Prove the *derivative sifting formula*:

$$\int_{-\infty}^{\infty} \delta'(x) f(x) \, dx = -f'(0) , \qquad (22)$$

where $\delta'(x)$ is the derivative of the δ function and f(x) is any differentiable function. Hint: use integration by parts and a *differentiable* δ -sequence, e.g. the Gaussian in Eq. (5).