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Delta function

Dirac’s delta function can be loosely defined as

δ(x) =
{

0 , x 6= 0 ,
∞ , x = 0 .

(1)

in such a way that the area under the curve is constant∫ ∞
−∞

δ(x) dx = 1 . (2)

One can formally show that no such function exists. However, one can define a sequence of
integrable functions fn(x), such that∫ ∞

−∞
fn(x) dx = 1 , (3)

for all n and such that fn(x) becomes increasingly concentrated around x = 0 as n increases.
We can then define the integral of the δ-function by∫ ∞

−∞
δ(x) dx ≡ lim

n→∞

∫ ∞
−∞

fn(x) dx . (4)

A sequence of functions with these properties is called a δ-sequence. For example the sequence
of Gaussians

fn(x) =
n√
π
e−n

2x2

, (5)

has these properties. This is illustrated in Fig. 1.

Another example is the sequence of functions gn(x) defined by

gn(x) =


n
2
, |x| < 1

n
,

0 , |x| ≥ 1
n
.

(6)

For proofs, the sequence gn(x) is easier to use. 1

1Note that all identities and relations must be independent of the particular sequence one is using. This
can be shown rigorously.
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Figure 1: Sequence fn(x) of Gaussians which are increasingly concentrated around x = 0.

We are interested in calculating the integral

I ≡
∫ ∞
−∞

f(x)δ(x) dx , (7)

where f(x) is some integrable function. Heuristically speaking, the δ-function picks up a
contribution to the integral only when x = 0, and so our intuition tells us that the value
of the integral should be I = f(0). Let us confirm this expectation. In analogy with the
definition Eq. (4), we define the integral I by

I ≡ lim
n→∞

∫ ∞
−∞

f(x)gn(x) dx (8)

Using the sequence (6), we obtain

∫ ∞
−∞

f(x)gn(x) dx =
n

2

∫ 1/n

−1/n
f(x) dx

= f(ξ) , (9)

where − 1
n
< ξ < 1

n
. The last line follows from the mean-value theorem of calculus. In the

limit n→∞, the value is ξ = 0 and so we obtain the important result

∫ ∞
−∞

δ(x)f(x) dx = f(0) (10)



Similarly, let us calculate the integral

I =
∫ ∞
−∞

f(x)δ(x− a) dx , (11)

where a is a nonzero constant. Changing variable to y = x − a, we see that we must have
I = f(a):

I =
∫ ∞
−∞

f(y + a)δ(y) dy

= f(a) . (12)

We next consider the integral

I =
∫ ∞
−∞

δ(f(x)) dx , (13)

If the function f(x) is nonzero for all x ∈ (−∞,∞), the integral vanishes. Assume next that
the function has a single zero at x = x∗. Moreover assume that f ′(x∗) > 0 so that f(x) is
invertible in a small interval around x∗. Introducing the variable y = f(x), the integral can
be written as

I =
∫ x∗+∆

x∗−∆
δ(f(x))dx

I =
∫ f(x∗)+f ′(x∗)∆

f(x∗)−f ′(x∗)∆
δ(y)

dx

dy
dy

=
∫ f ′(x∗)∆

−f ′(x∗)∆
δ(y)[f−1(y)]′dy

= [f−1(y)]′
∣∣∣∣
y=0

=
1

f ′(x∗)
, (14)

where we in the last line have used x = f−1(y) and therefore 1 = [f−1(y)]′f ′(x). If f ′(x∗) < 0,
the integral changes sign, I = −1/f ′(x∗). The two cases can conveniently be summarized in
the formula

I =
1

|f ′(x∗)|
. (15)

If the function f(x) has more than one zero, one must simply sum over all the zeros x∗i of
f(x) and we can write

δ(f(x)) =
∑
i

1

|f ′(x∗i )|
δ(x− x∗i ) (16)

—————————————————————————————————-



Example

Consider the following integral

I =
∫ ∞
−∞

δ(x2 − a2) dx . (17)

We define f(x) = x2 − a2 and we then have f ′(x) = 2x. The zeros of f(x) are x∗ = ±a and
hence |f ′(x = x∗)| = 2|a|. This implies that we can write

I =
1

2|a|

∫ ∞
−∞

[δ(x− a) + δ(x+ a)] dx

=
1

|a|
. (18)

——————————————————————————————————

Note that the function δ(x2) is too singular to be well defined. The problem is that the
derivative of f(x) = x2 vanishes at x = 0 which is the zero of the function itself and so
Eq. (15) makes no sense. This also follows directly from Eq. (18).

Heaviside’s step function

Let us define the function θ(x) by

θ(x) =
∫ x

−∞
δ(x) dx . (19)

Using the rules of delta-function calculus, we find 2

θ(x) =
{

1 , x > 0 ,
0 , x < 0 .

(20)

which is nothing but Heaviside’s step function, see Fig. 2.

From the fundamental theorem of calculus, one obtains

θ′(x) = δ(x) . (21)

Eq. (21) is a formal result as the derivative of Eq. (20). θ′(x) is not defined for x = 0.

2The defining Eq. (19) may not hold for x = 0. It depends on the limiting procedure that defines the
integral of δ(x). For example using one of the delta sequences from this chapter, it is clear that θ(0) = 1/2,
which is also a common definition.



-

6

x

θ(x)

1

Figure 2: Heaviside step function.

Problems

1) Calculate the Fourier transform f(p) of the delta function δ(x). Use this result to find an
integral representation of δ(x).

2) Prove the derivative sifting formula:∫ ∞
−∞

δ′(x)f(x) dx = −f ′(0) , (22)

where δ′(x) is the derivative of the δ function and f(x) is any differentiable function. Hint:
use integration by parts and a differentiable δ-sequence, e.g. the Gaussian in Eq. (5).


