

Exam TFY 4210 Applied Quantum Mechanics 2010

Lecturer: Professor Jens O. Andersen Department of Physics Phone: 73593131

> Saturday June 12 2010 09.00-13.00h

Examination support: Approved calculator Rottmann: Matematisk Formelsamling Rottmann: Matematische Formelsammlung Barnett & Cronin: Mathematical Formulae

The metric is (1, -1, -1, -1) and the units are $\hbar = c = 1$. The problem set is four pages. Useful formulas are listed at the end. Read carefully. Viel Glück!

Problem 1

The Lagrangian for a complex scalar field with mass m and charge q coupled to an electromagnetic field is

$$\mathcal{L} = (D_{\mu}\Phi)^{*}(D^{\mu}\Phi) - m^{2}\Phi^{*}\Phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} .$$

1) Show that the equation of motion for Φ^* is

$$\left[D_{\mu}D^{\mu} + m^2\right]\Phi = 0$$

1

In the following we will consider a single particle in two spatial dimensions with charge q in an external field given by the vector potential $A^{\mu} = (0, -By, 0, 0)$, where B is a constant.

- 2) Calculate the electric and magnetic fields \mathbf{E} and \mathbf{B} .
- 3) Show that the Hamiltonian density can be written as

$$\mathcal{H} = (\partial_0 \Phi)^* (\partial_0 \Phi) + [(\partial_x - iqBy)\Phi^*] [(\partial_x + iqBy)\Phi] + (\partial_y \Phi)^* (\partial_y \Phi) + m^2 \Phi^* \Phi + \frac{1}{2}B^2 .$$

Is \mathcal{H} Lorentz invariant?

4) The eigenfunctions of the equation of motion can be written as as

$$\Phi = e^{-i(Et-p_xx)}f(y) ,$$

where E is the energy of the state and p_x is the x-component of the momentum. Show by substition into the equation of motion that f(y) satisfies

$$\left[-\frac{d^2}{dy^2} - E^2 + m^2 + (p_x - qBy)^2\right]f(y) = 0$$

Use this to compute the spectrum, i.e. find the energy eigenvalues E. Hint: Harmonic oscillator.

Problem 2

Consider a dilute Bose gas at zero temperature. Let $a_{\mathbf{p}}$ be the annihilation operator for a particle with momentum \mathbf{p} and $a_{\mathbf{p}}^{\dagger}$ be a creation operator for a particle with momentum \mathbf{p} . The Bogolibov transformation is given by

$$a_{\mathbf{p}}^{\dagger} = u_{\mathbf{p}}b_{\mathbf{p}}^{\dagger} + v_{-\mathbf{p}}b_{-\mathbf{p}}$$
$$a_{\mathbf{p}} = u_{\mathbf{p}}b_{\mathbf{p}} + v_{-\mathbf{p}}b_{-\mathbf{p}}^{\dagger}$$

Note that the coefficients $u_{\mathbf{p}}$ and $v_{-\mathbf{p}}$ are real.

1) Find the relation that $u_{\mathbf{p}}$ and $v_{-\mathbf{p}}$ must satisfy if we demand that the quasiparticle operators $b_{\mathbf{p}}$ and $b_{\mathbf{p}}^{\dagger}$ satisfy the standard commutation relations

$$[b_{\mathbf{p}}, b_{\mathbf{k}}^{\dagger}] = \delta_{\mathbf{p}, \mathbf{k}} ,$$

and all other commutators vanish.

2) The interacting ground state of the Bose gas is denoted by $|\Phi\rangle$. Calculate the average

$$\langle a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} \rangle = \langle \Phi | a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger} | \Phi \rangle .$$

3) Explain briefly *condensate depletion* in the context of Bose-Einstein condensation.

Problem 3

Consider a weakly interacting Bose gas with action

$$S = \int dt \, d^3x \left[i\psi^{\dagger}(\mathbf{x},t)\partial_0\psi(\mathbf{x},t) + \mu\psi^{\dagger}(\mathbf{x},t)\psi(\mathbf{x},t) - \frac{1}{2m}\nabla\psi^{\dagger}(\mathbf{x},t)\cdot\nabla\psi(\mathbf{x},t) - \frac{1}{2}g\left(\psi^{\dagger}(\mathbf{x},t)\psi(\mathbf{x},t)\right)^2 \right] \,,$$

where ψ is a complex bosonic field, μ is the chemical potential, and $g = 4\pi a/m$, where m is the mass of the boson and a is the scattering length. We write the complex field ψ in polar form

$$\psi(\mathbf{x},t) = \sqrt{\sigma(\mathbf{x},t)} e^{i\phi(\mathbf{x},t)} ,$$

where σ is the density operator $\psi^{\dagger}\psi$ and ϕ is the phase of ψ . At T = 0, the system is in a Bose-Einstein condensed phase and we denote by ρ_0 the magnitude of the condensate. We must then replace σ by $\rho_0 + \tilde{\sigma}$, where $\tilde{\sigma}$ is a quantum fluctuating field. Inserting the polar parametrization of ψ into the action, one finds

$$S = \int dt \, d^3x \left\{ -(\rho_0 + \tilde{\sigma})\partial_0\phi - \frac{1}{2m} \left[(\rho_0 + \tilde{\sigma})(\nabla\phi)^2 + \frac{(\nabla\tilde{\sigma})^2}{4(\rho_0 + \tilde{\sigma})} \right] \right. \\ \left. + \mu(\rho_0 + \tilde{\sigma}) - \frac{1}{2}g(\rho_0 + \tilde{\sigma})^2 \right\} ,$$

where we have omitted a total divergence. In the following, we assume that density fluctuations are small compared to ρ_0 and so we can make a Taylor expansion of $1/4(\rho_0 + \tilde{\sigma})$ in the action. This yields

$$S = \int dt \, d^3x \left\{ -(\rho_0 + \tilde{\sigma})\partial_0 \phi - \frac{1}{2m} \left[(\rho_0 + \tilde{\sigma})(\nabla \phi)^2 + \frac{(\nabla \tilde{\sigma})^2}{4\rho_0} + \dots \right] + \mu(\rho_0 + \tilde{\sigma}) - \frac{1}{2}g(\rho_0 + \tilde{\sigma})^2 \right\} ,$$

where the dots indicate terms that are higher-order $\tilde{\sigma}$.

1) Show that the equation of motion for $\tilde{\sigma}$ can be written as

$$\tilde{\sigma} = -\frac{1}{g} \left[\partial_0 \phi + \frac{1}{2m} (\nabla \phi)^2 - A \nabla^2 \tilde{\sigma} \right] \,.$$

and determine the coefficient A. Hint: Use $\mu = g\rho_0$.

2) The equation of motion for $\tilde{\sigma}$ can be solved by iteration. As a first approximation we therefore set A = 0. Use its equation of motion to eliminate $\tilde{\sigma}$ from the action and show that we can write

$$S = \int dt \, d^3x \left\{ B \left[\partial_0 \phi + \frac{1}{2m} (\nabla \phi)^2 \right] + C \left[\partial_0 \phi + \frac{1}{2m} (\nabla \phi)^2 \right]^2 + \dots \right\} ,$$

and determine the coefficients B and C.

3) A Galilean transformation is defined by

$$\begin{aligned} \mathbf{x}' &= \mathbf{x} - \mathbf{v}t , \\ t' &= t , \end{aligned}$$

where \mathbf{v} is the velocity of the frame S' with respect to the frame S. The various derivatives of the phase transform as

$$abla \phi \rightarrow \nabla \phi + m \mathbf{v} ,$$

 $\partial_0 \phi \rightarrow \partial_0 \phi - \mathbf{v} \cdot \nabla \phi - \frac{1}{2} m v^2 .$

Is the action for the phase invariant under Galilean transformations?

- 4) Find the propagator for the field ϕ .
- 5) Find the spectrum and comment on the result.

Useful formulas

$$\mathcal{H}_{\text{Maxwell}} = \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2) ,$$

$$D_{\mu} = \partial_{\mu} + iqA_{\mu} ,$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} .$$