
Chapter 1

Lorentz transformations

1.1 Boosts

Let S and S ′ be two inertial frames, where S ′ moves with speed v relative to S along the x-
axis. Let (x, y, z, t) and (x′, y′, z′, t′) be the space-time coordinates in the two inertial frames.
The clocks are synchronized such that the origins O of S coincides with the origin O′ of S ′

for t = t′ = 0.

The coordinates in the two coordinate systems are then related by the following transfor-
mations:

x′ = γ(x− vt) , (1.1)

y′ = y , (1.2)

z′ = z , (1.3)

t′ = γ(t− vx/c2) , (1.4)

where γ = 1/
√

1− v2/c2. This can conveniently be written in matrix form(
x′

ct′

)
=

(
cosh θ − sinh θ
− sinh θ cosh θ

)(
x
ct

)
, (1.5)

where cosh θ = γ and sinh θ = γv/c. This gives

tanh θ =
v

c
. (1.6)

Note that coordinates x and t are both involved in the transformations (1.1)-(1.4). This has
important consequences: observers in S and S ′ do not (necessarily) longer agree that two
events are taking place at the same time. The idea of simultaneous events is not absolute.
More specifically, it leads to the following important effects

• Lorentz contraction: A rod of length L at rest is shorter by a factor 1/γ when
moving with speed v.
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• Time dilation: A moving clock is slower than a clock at rest.

Since space and time are intertwined, we introduce the idea of space-time or Minkowski
space with coordinates (x, y, z, ct). The points in space-time are events, i.e. “something
happening” at time t at a specific point in space 1.

The determinant of matrix (1.5) is unity. This is the same as for a proper rotation matrix
in R: (

x′

y′

)
=

(
cos θ − sin θ
sinh θ cos θ

)(
x
y

)
, (1.7)

If we write ct = iT , the matrix (1.5) is transformed into the matrix (1.7) (Exercise!) Thus,
a boost can be viewed as a rotation.

The Newtonian limit of (1.1)-(1.4) is found by setting γ = 1, i.e. by assuming v � c and
keeping only terms that are at most first order in v/c. This yields

x′ = (x− vt) , (1.8)

y′ = y , (1.9)

z′ = z , (1.10)

t′ = t . (1.11)

This transformation is known as a Galilean transformation and is the nonrelativistic limit
of special relativity. Note in particular that idea of simultaneity is absolute.

1.2 Geometry of Minkowski space

We next introduce the distance (∆s)2 between the two points in Minkowski space by

(∆s)2 = c2(∆t)2 −
[
(∆x)2 + (∆y)2 + (∆z)2

]
. (1.12)

In S ′, we obtain

(∆s′)2 = c2(∆t′)2 −
[
(∆x′)2 + (∆y′)2 + (∆z′)2

]
= γ2c2

[
(∆t)2 − 2v∆x∆

c2
+
v2

c4
(∆x)2

]
− γ2

[
(∆x)2 − v2(∆t)2 − 2v∆x∆t

]
−(∆y)2 − (∆z)2

= γ2c2(∆t)2

[
1− v2

c2

]
− γ2(∆x)2

[
1− v2

c2

]
− (∆y)2 − (∆z)2

= c2(∆t)2 −
[
(∆x)2 + (∆y)2 + (∆z)2

]
, (1.13)

1An example of event is the emission of light at time t by a source located at (x, y, z).
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where we in the last line have used that γ = 1/
√

1− v2/c2. Thus the quantity (∆s)2 is
independent of the inertial frame. In fact, one can show that the quantity is invariant
under all Lorentz transformations and it can therefore be viewed as a geometric quantity
independent of coordinate systems. In differential form, we write it as

ds2 = c2dt2 − dx2 − dy2 − dz2 . (1.14)

We next define xµ = (ct,x). In other words, x0 = ct , x1 = x, x2 = y , and x3 = z, and so
µ = 0, 1, 2, 3. Moreover, we introduce the metric tensor, gµν which can be written as a 4× 4
matrix:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 −1 0 −1

 . (1.15)

This is also in shorthand notation: g = diag(1,−1,−1,−1). We can then write

ds2 = gµνdx
µdxν , (1.16)

where we are using Einstein summation convention: One is summing over repeated indices
(one index upstairs and one index downstairs).

We next introduce the concept of a contravariant vector, which is four quantities Aµ that
transform like xµ under Lorentz transformations. Moreover, we define a covariant vector Aµ

in terms of the metric tensor and the contravariant vector Aν by

Aµ = gµνA
ν (1.17)

For example, the covariant vector xµ = (ct,−x). The metric can now be written as a product
between a contravariant and a covariant vector:

ds2 = dxµdx
µ . (1.18)

We have seen that ds2 is the same in all inertial frames, i,.e it is scalar.

1.2.1 Differential Operators

We next discuss how the differential operator ∂/∂µ transforms under Lorentz transforma-
tions. We restrict ourselves to boosts along the x-axis. Using the chain rule, we can write

∂

∂x′ =
∂x

∂x′
∂

∂x
+

∂t

∂x′
∂

∂t
(1.19)

∂

∂y′ =
∂

∂y
(1.20)

∂t

∂z′ =
∂

∂z
(1.21)

∂

∂t′
=

∂x

∂t′
∂

∂x
+
∂t

∂t′
∂

∂t
. (1.22)
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In order to find the partial derivatives, we need the inverse transformations of () given by

x = γ(x′ + vt′) , (1.23)

y = y′ , (1.24)

z = z′ , (1.25)

t = γ(t′ + vx′) . (1.26)

This yields

∂

∂x′ = γ

[
∂

∂x
+ v

∂

∂t

]
(1.27)

∂

∂y′ =
∂

∂y
(1.28)

∂t

∂z′ =
∂

∂z
(1.29)

∂

∂t′
= γ

[
∂

∂t
+ v

∂

∂x

]
. (1.30)

If we compare with the transformation rules for xµ = (−x, t)

−x′ = γ[−x− vt] , (1.31)

−y′ = −y , (1.32)

−z′ = −z , (1.33)

t′ = γ[t+ vx] , (1.34)

we conclude that the differential operator ∂/∂xµ transforms as a covariant vector. We denote
it therefore by ∂µ.

Exercise

Show that ∂/∂xµ transforms as a contravariant vector under Lorentz transformations.

From the above, we conclude that the operator

∂µ∂
µ = gµν∂

µ∂ν , (1.35)

is a scalar under Lorentz transformations.

Consider a rotation in the xy-plane by an angle θ. We can represent a rotation in the
plane by a 2× 2 matrix which relates the new and old coordinates:(

x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
. (1.36)
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This yields

∂

∂x′ =
∂x

∂x′
∂

∂x
+
∂y

∂x′
∂

∂y

= cos θ
∂

∂x
+ sin θ

∂

∂y
(1.37)

∂

∂y′ =
∂x

∂y′
∂

∂x
+
∂y

∂y′
∂

∂y

= − sin θ
∂

∂x
+ cos θ

∂

∂y
. (1.38)

The operator ∇2 is then invariant under rotation:

(∇′)
2

=

(
∂

∂x′

)2

+

(
∂

∂y′

)2

(
∂

∂x

)2

+

(
∂

∂y

)2

= ∇2 . (1.39)

This result can be easily generalized to three spatial dimensions. In that case the rotation
matrix is a 3× 3 matrix and is parameterized by three angles, the so-called Euler angles.
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